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Holonomic differential equations

We consider a differential equation of type

an(x) y (n)(x) + an−1(x) y (n−1)(x) + . . .+ a0(x) y(x) = 0, n ∈ N.

When the coefficients ai(x), i = 0, . . . ,n are polynomials of the variable x ,
the differential equation is said to be holonomic.

Remark
For a given homogeneous linear differential equation with rational function
coefficients, one can multiply by their common denominator and get a
holonomic differential equation with the same space of solutions.
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Differential operators

Every holonomic differential equation

an(x) y (n)(x) + an−1(x) y (n−1)(x) + . . .+ a0(x) y(x) = 0,

with ai(x) ∈ Q[x ], corresponds to a differential operator L given by

L =
n∑

i=0

ai(x)Di
x , (1)

and vice versa. Hence,

Remark
By the solutions of a differential operator L we mean the solutions y of the
holonomic differential equation Ly = 0.
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Differential operators

Definition
Let

L =
n∑

i=0

ai(x)Di
x ,

and n0 = max{i = 0,1, . . . ,n ai(x) 6= 0}. n0 is called the order of L, and
an0(x) its leading coefficient.

The ring of differential operators with coefficients in K = Q[x ] is denoted
by K[Dx ]. In our context, Dx := d

dx .
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First-order holonomic differential equations

First-order holonomic differential equations are of type

a1(x) y ′ + a0(x) y = 0 with a0(x),a1(x) ∈ Q[x ], a1(x) 6= 0.

That means, non-zero solutions satisfy

y ′

y
= −a0(x)

a1(x)
, (2)

and they can be easily computed in the form

y(x) = c · exp
(∫
−a0(x)

a1(x)
dx
)

with c ∈ R. (3)

Those solutions are called hyperexponential functions.

MOUAFO WOUODJIE Merlin Hypergeometric Type Solutions October 6, 2018 Slide 7/63



Plan Introduction Previous work My work Our main tools How to find the transformation parameter(s) Example Some references

First-order holonomic differential equations

First-order holonomic differential equations are of type

a1(x) y ′ + a0(x) y = 0 with a0(x),a1(x) ∈ Q[x ], a1(x) 6= 0.

That means, non-zero solutions satisfy

y ′

y
= −a0(x)

a1(x)
, (2)

and they can be easily computed in the form

y(x) = c · exp
(∫
−a0(x)

a1(x)
dx
)

with c ∈ R. (3)

Those solutions are called hyperexponential functions.

MOUAFO WOUODJIE Merlin Hypergeometric Type Solutions October 6, 2018 Slide 8/63



Plan Introduction Previous work My work Our main tools How to find the transformation parameter(s) Example Some references

Example of first-order holonomic differential equations

Let us consider the following differential equation

(x2 + 1)y ′ − xy = 0.

Non-zero solutions are

y(x) = c · exp
(∫
− −x

x2 + 1
dx
)

= c · exp
(

1
2

ln
(
x2 + 1

))
= c ·

√
x2 + 1 with c ∈ R.
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Second-order holonomic differential equations

Second-order holonomic differential equations are of the form

(eq) : a2(x) y ′′ + a1(x) y ′ + a0(x) y = 0

with a0(x),a1(x),a2(x) ∈ Q[x ], a2(x) 6= 0.

If the operator associated to (eq) is reducible, solutions of (eq) can
be easily computed, since we know how to solve first-order holonomic
differential equations. To check the reducibility of an operator, we can use
some known algorithms like Beke’s algorithm. This algorithm was extended
by Mark van Hoeij in his PhD thesis on factorization of linear differential
operators (1996).
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Example of reducible second-order holonomic
differential equations

Let us consider the following differential equation

(E2) : (x + 7)y ′′ − x(x + 7)y ′ + xy = 0. (4)

Its associated operator can be factorized as follows:

(x + 7)D2
x − x(x + 7)Dx + x = (Dx − x) · ((x + 7)Dx − 1)

Hence, solving (x + 7)y ′ − y = 0, we get a solution of (E2) given by

y(x) = exp
(∫

1
x + 7

dx
)

= exp (ln (x + 7)) = x + 7.
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Second-order holonomic differential equations

If the differential operator associated to

(eq) : a2(x) y ′′ + a1(x) y ′ + a0(x) y = 0

is irreducible, it is more difficult to find solutions of (eq). There are some
algorithms which try to find them in some particular forms. Kovacic’s
algorithm (which finds Liouvillian solutions) is an example. Some complete
algorithms which solve (eq) in terms of some special functions are given by
Ruben Debeerst, Mark Van Hoeij, Wolfram Koepf and Quan Yuan.
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Special functions type solutions

The complete algorithm to solve irreducible second-order differential
equations in terms of special functions tries to find all solutions of the type

exp
(∫

r dx
)(

r0S(f (x)) + r1 (S(f (x)))′
)

where S is the special function that we want to solve in terms of it, and
r , r0, r1, f ∈ Q(x) are parameters of the three following transformations
which preserve the order of the operator:

(i) change of variables f−→C : y(x)→ y(f (x)),

(ii) exp-product r−→E : y → exp
(∫

r dx
)

y , and

(iii) gauge transformation
r0,r1−→G: y → r0y + r1y ′.
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Example of irreducible second-order holonomic
differential equations

Let us consider the following differential equation

(E3) : 4(x − 2)2y ′′ + (4x − 8)y ′ + (−144x4 + 1152x3 − 3456x2

+ 4608x − 2305)y = 0.

By using Ruben Debeerst code, it comes out that a solution of (E3) is given
by

y(x) = B 1
4

(
3(x − 2)2) , (5)

where Bν(x) is the Bessel function of parameter ν.

Bessel functions belong to the class of special functions since they are
expressed in terms of the most prominent special function solutions of
holonomic differential equations called generalized hypergeometric
functions.
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Generalized hypergeometric functions

The generalized hypergeometric series pFq are defined by

pFq

(
a1,a2, . . . ,ap

b1,b2, . . . ,bq

∣∣∣∣∣ x
)

=
+∞∑
k=0

(a1)k · (a2)k · · · (aP)k

(b1)k · (b2)k · · · (bq)k · k !
xk ,

where (a)k denotes the Pochhammer symbol

(a)k :=

{
1 if k = 0 or a = 0,

a · (a + 1) · · · (a + k − 1) if k > 0 and a 6= 0. (6)
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Generalized hypergeometric functions

The generalized hypergeometric series pFq satisfy the holonomic differential
equation

δ(δ + b1 − 1) · · · (δ + bq − 1)y(x) = x(δ + a1) · · · (δ + ap)y(x) (7)

where δ denotes the differential operator δ = x d
dx . This equation has order

max(p,q + 1).
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Generalized hypergeometric functions

1 For p ≤ q the series pFq is convergent for all x ,
2 for p > q + 1 the radius of convergence is zero,
3 for p = q + 1 the series converges for |x | < 1.

For p ≤ q + 1 the series and its analytic continuation is called
hypergeometric function, and for p < q + 1 the series is called generalized
hypergeometric function. We are interested here by the case p < q + 1 for
which the radius of convergence is infinity.
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Third-order holonomic differential equations

Third-order holonomic differential equations are of type

(eq) : a3(x) y ′′′ + a2(x) y ′′ + a1(x) y ′ + a0(x) y = 0

with a0(x),a1(x),a2(x),a3(x) ∈ Q[x ], a3(x) 6= 0.

If the differential operator associated to (eq) is reducible,
solutions of (eq) can be in some cases easily computed, since we know how
to solve first-order holonomic differential equations and also, in some
particular cases, second-order holonomic differential equations.
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Example of reducible third-order holonomic differential
equations

Let us consider the following differential equation

(E4) : 9x6(x + 7)2y ′′′ + 9x4(x + 7)(8x2 + 47x + 84)y ′′

+ x2(2954x2 − 882x + 90x4 + 972x3 − 21609)y ′

+ (−74088x − 259308− 1274x3 − 13818x2)y = 0.

The operator associated to (E4) can be factorized in the following form(
x2Dx + 12

)
·
(
9x4(x + 7)2D2

x + 9(7 + 2x)x3(x + 7)Dx

−21609− 637x2 − 6174x
)
.

Hence, solving

(E5) : 9x4(x + 7)2y ′′ + 9(7 + 2x)x3(x + 7)y − (21609 + 637x2

+ 6174x)y = 0

gives us a solution of (E4).
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By using Ruben Debeerst code, it comes out that a solution of

(E5) : 9x4(x + 7)2y ′′ + 9(7 + 2x)x3(x + 7)y − (21609 + 637x2

+ 6174x)y = 0

is given in terms of Bessel functions:

y(x) = B 2
3
((x + 7)/x) (8)

which is therefore a solution of (E4).
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Third-order holonomic differential equations

If the differential operator associated to

(eq) : a3(x) y ′′′ + a2(x) y ′′ + a1(x) y ′ + a0(x) y = 0

is irreducible, it is difficult to solve this equation. In addition to being
irreducible, if Liouvillian or Eulerian solutions of L are not allowed, then no
algorithm for this case is yet published. That is the case for example where
this operator comes from certain special and useful functions such as
hypergeometric functions. And that is also why we focus on those operators
here.
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Example of irreducible third-order holonomic
differential equations

Let us consider the following third-order irreducible holonomic differential
equation satisfied by the square of the Hermite polynomial:

(E6) : y ′′′ − 6xy ′′ + (8x2 + 8n − 2)y ′ − 16xny = 0.

If we assume that we don’t know where (E6) is coming from, it will be
difficult to solve it. But, by using one of my code which I have implemented
in a Maple package called Solver3 which can be downloaded from
http://www.mathematik.uni-kassel.de/~merlin/, we have
some solutions. The Maple function is called Hyp1F1sqSolutions and
takes as input any irreducible third-order linear differential operator L and
returns, if they exist, all the parameters of transformations
(r , r2, r1, r0, f ∈ k(x)) and the parameters of the function 1F 2

1 that we are
solving (E6) in terms of it.
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Start Maple

MOUAFO WOUODJIE Merlin Hypergeometric Type Solutions October 6, 2018 Slide 30/63



Plan Introduction Previous work My work Our main tools How to find the transformation parameter(s) Example Some references

Our main objective

We develop a complete algorithm to detect the solutions of any third-order
irreducible holonomic differential equation which are related to the
following special functions: 1F 2

1 , 0F2, 1F2, 2F2.

Remark

If y a is solution of a second-order holonomic differential equation, then y2

is a solution of a holonomic differential equation of order three. That is the
case for the function y = 1F1. This is a rich source for third-order
holonomic differential equations whose solutions are sought.

All our special functions 1F 2
1 , 0F2, 1F2, 2F2 satisfy third-order holonomic

irreducible differential equations. For example, the differential operator
associated to the 1F 2

1 function is
L2

11 = x2D3
x + 3x (−x + b)D2

x −
(
−2x2 + 4x(a + b)− b(2b − 1)

)
Dx

− 2a (−2x + 2b − 1)
where a and b are the upper and lower parameters of 1F1, respectively.
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The method

To solve our differential equations, we use the three transformations

(i) change of variables f−→C : y(x)→ y(f (x)),

(ii) exp-product r−→E : y → exp
(∫

r dx
)

y , and

(iii) gauge transformation
r0,r1,r2−→ G: y → r0y + r1y ′ + r2y ′′.

where r , r0, r1, f ∈ Q(x).

Our goal is to find all solutions which can be written in the form:

exp
(∫

r dx
)
(r0S(f (x)) + r1(S(f (x)))′ + r2(S(f (x)))′′)

where S(x) ∈ {1F 2
1 , 0F2, 1F2, 2F2} and r , r0, r1, r2, f ∈ Q(x) and

r , r0, r1, r2, f ∈ Q(x).
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Our aim

Our aim becomes now, for a given third-order irreducible holonomic
differential equation, to find (if they exist) the transformation parameters
r , r0, r1, r2 and f , and also the parameter(s) associated to our chosen special
function S(x) ∈ {1F 2

1 , 0F2, 1F2, 2F2}.

Remark
The only case which is not covered since it requires different method, is
where the special function has finite radius of convergence: 2F 2

1 and 3F2 are
the only examples.
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Our inputs

As input, we consider a third-order irreducible holonomic differential
equation with coefficients in Q[x ]

(eq) : a3(x) y ′′′ + a2(x) y ′′ + a1(x) y ′ + a0(x) y = 0

that we want to solve in term of S(x) ∈ {1F 2
1 , 0F2, 1F2, 2F2}.

Let us call L the differential operator associated to (eq).
LS is always the operator associated to the differential equation satisfied by
S(x) ∈ {1F 2

1 , 0F2, 1F2, 2F2}.
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Steps of the resolution

1 Find the singularities of the differential operator L
2 Find the generalized exponents of L
3 Find the transformation parameter(s) which are:

(a) the change of variable parameter f
(b) the parameter(s) of our chosen special function S
(c) the exp-product parameter r
(d) the gauge parameters r0, r1 and r2.
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Singularities

Definition

A point p ∈ C ∪ {∞} is called a singularity of a holonomic differential
operator L, if p is a zero of the leading coefficient of L. All the other points
are called regular points.

Remark
- To understand the singularity at x =∞, one can always use the change

of variables x → 1
x and deal with 0.

- At all regular points of L we can find a fundamental system of power
series solutions.

If p ∈ C ∪ {∞}, we define the local parameter tp as

tp =

{
x − p if p 6=∞,

1
x if p =∞ .
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Singularities

Let L 1
x

denote the operator coming from L by the change of variables

x → 1
x .

Definition
A singularity p of L is called

(i) apparent singularity if all solutions of L are regular at p,

(ii) regular singular (p 6=∞) if t i
p

a3−i(x)
a3(x)

is regular at p for 1 ≤ i ≤ 3,

(iii) regular singular (p =∞) if L 1
x

has a regular singularity at x = 0, and

(iv) irregular singular otherwise.

The operators coming from our functions 1F 2
1 , 0F2, 1F2, 2F2 have two

singularities: one regular at x = 0 and the other irregular at x =∞.
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Generalized exponents

Let us consider the following differential equation

(E7) : x2(x + 1)y ′′ − (6x + 7x2)y ′ + (12 + 16x)y = 0.

By searching a solution of (E7) at the neighborhood of x = 0 in the form
xc ·G with c ∈ Q, G ∈ Q[x ][ln(x)] such that G has a non-zero constant
coefficient, we get

y(x) = x3 (1 + x − x ln(x)) , (9)

and therefore, c = 3.

What happens if we want solutions in the same form but with c which is not
a constant? The answer to this question leads us to the definition of the
generalized exponent.
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Generalized exponents

Definition

Let p be a point with local parameter tp. An element e ∈ Q[tp−1/n], n ∈ N∗
is called a generalized exponent of L at the point p if there exists a formal
solution of L of the form

y(x) = exp
(∫

e
tp

dtp

)
G, G ∈ Q((tp1/n))[ln(tp)], (10)

where the constant term of the Puiseux series G is non-zero. For a given
solution this representation is unique and n ∈ N is called the ramification
index of e.

The set of generalized exponents at a point p is denoted by gexp(L,p).
Similarly, we call e a generalized exponent of the solution y at the point p if
y = y(x) has the representation (10) for some G ∈ Q((tp1/n))[ln(tp)].
There is an algorithm called gen-exp given by Mark van Hoeij which
computes the generalized exponents of L at a given point.
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Generalized exponents

Generalized exponents and singularities

• p is an irregular singularity of L if L has at p at least one non-constant
generalized exponent.

• p is a regular point of L if the three generalized exponents of L at p are
0,1,2.

• If p is an apparent singular of L, then all the generalized exponents of L
at p are non-negative integers.

• If p is a regular singular of L, then all the generalized exponents of L at
p are constants.
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Generalized exponents

Example

The operator L2
11 coming from the function 1F 2

1 with parameters a and b
(the upper and lower parameters of 1F1, respectively) has as generalized
exponents:

1 at its regular singularity x = 0: [0, 1− b, 2(1− b)] ,
2 at its irregular singularity x =∞:

[
2a, − 2t−1 + 2(b − a), − t−1 + b

]
with t =

1
x
.
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Generalized exponents and exp-product
transformation

Lemma

Let L1,L2 ∈ Q[x ][∂] be two irreducible third-order holonomic differential
operators such that L1

r−→E L2 and let e be a generalized exponent of L1 at
the point p ∈ C ∪ {∞} with the ramification index ne ∈ N∗. Furthermore,
let r has at p the series representation

r =
+∞∑
i=mp

ri t i
p, mp ∈ Z with ri ∈ Q and rmp 6= 0.

where tp is the local parameter of p.
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Generalized exponents and exp-product
transformation

1- If p is not a pole of r then mp ≥ 0 and the generalized exponent of L2
at p is

e =

{
e if p 6=∞,
e − r0t−1

∞ − r1 otherwise. (11)

2- If p is a pole of r then mp ≤ −1, where −mp is the multiplicity order
of r at p, and the generalized exponent of L2 at p is given by

e =


e +

−1∑
i=mp

ri t i+1
p if p 6=∞,

e −
1∑

i=m∞

ri t i−1
∞ otherwise.

(12)
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Generalized exponents and gauge transformation

Lemma

Let L1,L2 ∈ Q[x ][∂] be two irreducible third-order holonomic differential
operators such that L1 −→G L2 and let e be a generalized exponent of L1 at
some point p. The operator L2 has at p a generalized exponent e such that
e = e mod 1

ne
Z, where ne ∈ N∗ is the ramification index of e.
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Generalized exponents and change of variable
transformation

Let us consider the case LS
f−→C M with S(x) ∈ {1F 2

1 , 0F2, 1F2, 2F2}
and f ∈ Q(x) \Q. Since LS has singularities at 0 and∞, we will see how
the generalized exponents of M look like at the points p such that f (p) = 0
and f (p) =∞ (i.e. at the zeroes and poles of f ).
We have given and proved a general theorem on the behaviour of the
generalized exponents of M after a change of variable at the zeroes and poles
of f . Let us apply this theorem where LS is the operator L2

11 coming from the
function 1F 2

1 with parameters a and b (the upper and lower parameters of
1F1, respectively).
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Generalized exponents and change of variable
transformation

Generalized exponents at the zeroes of f

Let p be a zero of f with multiplicity mp ∈ N∗. Then the generalized
exponents of M at p are

[0, mp (1− b) , 2mp (1− b)] .
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Generalized exponents and change of variable
transformation

Generalized exponents at the poles of f

Let p be a pole of f with multiplicity mp ∈ N∗, then the generalized
exponents of M at p are2mpa, − 2mp(a− b) + 2

−1∑
j=−mp

jfj t
j
p, mpb +

−1∑
j=−mp

jfj t
j
p

 ,
where f = t−mp

p

+∞∑
j=0

fj−mp t j
p with fj−mp ∈ Q and f−mp 6= 0.
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Transformations

The task now is to find our three transformations such that

LS
f−→C M r−→E L1

r0,r1,r2−→ G L

with r , r0, r1, r2 ∈ Q(x), f 2 ∈ Q(x) \Q and M,L1 ∈ Q[x ][∂].
A solution y of L in terms of S will be

y = exp
(∫

r dx
)(

r0S(f (x)) + r1(S(f (x)))
′
+ r2(S(f (x)))

′′
)
.

Finding these transformations is equivalent to find their parameter(s). We
proceed as follows:

1 in the first step, we find the change of variable parameter f and the
parameter(s) associated to the function S,

2 in the second step, we find the parameters r , r0, r1 and r2 for the
exp-product and gauge transformations.
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How to find the change of variable parameter f

Let S ∈ {1F 2
1 , 0F2, 1F2, 2F2}.

1 If the ramification index of LS at∞ is 1 we compute the polar part of f
from the generalized exponents of L at its irregular singularities. Then
we get f by using the regular singularities of L or some information
related to the degree of the numerator that f can have.

2 If the ramification index of LS at∞ is greater than 1, we put f in the

form f =
A
B

with A,B ∈ k [x ], B monic and gcd(A,B) = 1. Using the
generalized exponents at the irregular singularities of L, we can
compute B and a bound for the degree of A. Hence, using also the fact
that the ramification index of LS is greater than 1, we can get the
truncated series for f and some linear equations for the coefficients of
A. By comparing the number of linear equations for the coefficients of
A and the degree of A, we will deal with some cases which will help us
to find A.
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How to find the parameter(s) of our chosen special
function S

Let us assume that we know f . By observing the forms of the generalized
exponents of L at the zeroes and poles of f with their corresponding
multiplicity orders, we find the parameter(s) of our special function S.
Therefore, we obtain the differential operator LS associated to S. That
means we get the operator M coming from LS by the change of variable
transformation with parameter f .

LS
f−→C M.
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How to find the exp-product parameter r

Let us assume that we know the operator M such that

LS
f−→C M r−→E L1

r0,r1,r2−→ G L

To find the exp-product parameter r we proceed as follows:

Theorem

Let M,L ∈ k(x)[∂] be two irreducible third-order linear differential
operators such that M −→EG L and r the parameter of the exp-product
transformation. Let NS be the set of all non-apparent singularities of L and
P0 the set of all the poles of r . For p ∈ P0 ∪ NS, let us set

ei
p = ei

p(L)− ei
p(M), i = 1,2,3

where ei
p(M) and ei

p(L) are the i-th generalized exponent of M and L at p,
respectively. Then the exp-product parameter r is given by

r =
∑

p∈NS\{∞}

ei
p

tp
− t∞ · ei

∞ +
∑

p∈NS\{∞}

cp

np
t−1
p (13)
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How to find the exp-product parameter r

where ei
∞ = ei

∞ − const(ei
∞) with const(ei

∞) the constant term of ei
∞,

np = max
{

nei
p(M), i = 1,2,3

}
with nei

p(M) the ramification index of

ei
p (M) , and cp ∈ Z with |cp| < np.

MOUAFO WOUODJIE Merlin Hypergeometric Type Solutions October 6, 2018 Slide 57/63



Plan Introduction Previous work My work Our main tools How to find the transformation parameter(s) Example Some references

How to find the gauge parameters r0, r1 and r2

Let us assume that we get our exp-product parameter r . Therefore, we have
the operator L1 such that

LS
f−→C M r−→E L1

r0,r1,r2−→ G L

To find the gauge parameters r0, r1 and r2, if they exist, we use the gauge
equivalence test (from Mark Van Hoeij) which gives us those parameters as
the coefficients of a second-order linear differential operator:
r2∂

2 + r1∂ + r0.

At the end, if we succeed to find those parameters of transformations and
also the parameter(s) associated to the considered special function S, we get
a solution y of L in the form

y(x) = exp
(∫

r dx
)
(r0S(f (x)) + r1(S(f (x)))′ + r2(S(f (x)))′′) .
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Illustration example

We have implemented the methods of this work in a Maple package called
Solver3 which can be downloaded from
http://www.mathematik.uni-kassel.de/~merlin/. My PhD
thesis explains the algorithms in more detail. We will take here just one
example and show how our package can be used. Let us consider the
following third-order irreducible holonomic differential equation satisfied by
the square of the Laguerre polynomial:

x2y ′′′+(−3x2+3x)y ′′+(4nx+2x2−4x+1)y ′+(−4nx+2n)y = 0. (14)

Let our input operator L be the operator associated to this differential
equation and see if we can solve it using our codes. That means if we can
find the function
S ∈ {1F 2

1 , 0F2, 1F2, 2F2} and the transformation parameters such that

LS
f−→C M −→EG L.

We upload first our Maple package called Solver3.
We show step by step in the Maple file below how we use our method to
solve this example.
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Illustration example

Start Maple
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Thank for your kind

attention!!!
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