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Inversion formula of the Laguerre polynomials

We consider the Laguerre polynomials

L(α)
n (x) =

(α + 1)n

n!
1F1

(
−n
α + 1

∣∣∣∣∣ x
)

=
(α + 1)n

n!

n∑
k=0

(−n)k

(α + 1)k

xk

k !
.

From this definition,

L(α)
0 (x) = 1⇒ x0 = 1 = L(α)

0 (x);

L(α)
1 (x) = −x + α + 1⇒ x = −L(α)

1 (x) + (α + 1)L(α)
0 (x);

and from

L(α)
2 (x) =

1
2

x2 − (α + 2)x +
1
2

(α + 1)(α + 2),

we get

x2 = 2L(α)
2 (x)− (2α + 4)L(α)

1 (x) + (α + 1)(α + 2)L(α)
0 (x).
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Inversion formula

In general, since deg L(α)
n (x) = n, the system {L(α)

k (x), k = 0,1,2, . . . ,n}
is a basis of polynomials of degree at most n. Therefore, there exist
coefficients Ik (n) such that the inversion formula

xn =
n∑

k=0

Ik (n)L(α)
k (x)

is valid. How can we compute the inversion coefficients Ik (n)?
One option is by using a generating function of the given polynomials.
A generating function of the Laguerre polynomials is given by

et
0F1

(
−

α + 1

∣∣∣∣∣−xt

)
=
∞∑

n=0

L(α)
n (x)

(α + 1)n
tn,

which is equivalent to

0F1

(
−

α + 1

∣∣∣∣∣−xt

)
= e−t

∞∑
n=0

L(α)
n (x)

(α + 1)n
tn.
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Inversion formula of the Laguerre polynomials

Using the series expansion of the exponential function, this yields

∞∑
n=0

(−xt)n

(α + 1)nn!
=

( ∞∑
n=0

(−t)n

n!

)( ∞∑
k=0

L(α)
k (x)

(α + 1)k
tk

)
.

From the relation (Cauchy product)

∞∑
n=0

∞∑
k=0

A(k ,n) =
∞∑

n=0

n∑
k=0

A(k ,n − k),

we get

∞∑
n=0

(−1)nxntn

(α + 1)nn!
=
∞∑

n=0

n∑
k=0

(−1)n−k tn−k

(n − k)!

L(α)
k (x)

(α + 1)k
tk

=
∞∑

n=0

(
n∑

k=0

(−1)n−k L(α)
k (x)

(n − k)!(α + 1)k

)
tn.

D.D. TCHEUTIA Inversion, multiplication and connection formulae for classical continuous orthogonal polynomials October 5-12, 2018 Slide 5/26



Inversion problem Multiplication formula Connection formula Some structure relations of COP The inversion formula The connection and multiplication formulae knowing the inversion formula

Exercise

Equating the coefficients of tn yields

xn =
n∑

k=0

(−1)k n!(α + 1)n

(n − k)!(α + 1)k
L(α)

k (x).

Exercise: Use the generating function

e2xt−t2
=
∞∑

n=0

Hn(x)

n!
tn,

of the Hermite polynomials and the relation

∞∑
n=0

∞∑
k=0

A(k ,n) =
∞∑

n=0

bn/2c∑
k=0

A(k ,n − 2k),

where bn/2c is the floor of n/2, to show the inversion formula

xn =

bn/2c∑
k=0

n!Hn−2k (x)

2nk !(n − 2k)!
.
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Multiplication formula of the Laguerre polynomials

We consider the following generating function of the Laguerre polynomials

G(x , t) := et
0F1

(
−

α + 1

∣∣∣∣∣−xt

)
=
∞∑

n=0

L(α)
n (x)

(α + 1)n
tn.

From this definition, we get G(ax , t) = et(1−a)G(x ,at) or equivalently
∞∑

n=0

L(α)
n (ax)

(α + 1)n
tn =

( ∞∑
n=0

(1− a)ntn

n!

)( ∞∑
k=0

L(α)
k (x)

(α + 1)k
ak tk

)
.

It follows from the Cauchy product that
∞∑

n=0

L(α)
n (ax)

(α + 1)n
tn =

∞∑
n=0

n∑
k=0

ak (1− a)n−k L(α)
k (x)

(α + 1)k (n − k)!
tn.

Equating the coefficients of tn yields the multiplication formula of the
Laguerre polynomials

L(α)
n (ax) =

n∑
k=0

ak (α + 1)n(1− a)n−k

(α + 1)k (n − k)!
L(α)

k (x).
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Exercise

Show that for the Hermite polynomials, the generating function
G(t , x) = exp(2xt − t2) satisfies

G(t ,ax) = e(a2−1)t2
G(at , x).

Deduce from

e2xt−t2
=
∞∑

n=0

Hn(x)

n!
tn

that the multiplication formula

Hn(ax) =

bn/2c∑
m=0

ann!(1− a−2)m

(n − 2m)!m!
Hn−2m(x)

is valid.
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Connection formula of the Laguerre polynomials

If we rather consider the generating function

G(α, t) := (1− t)−α−1 exp
(

xt
t − 1

)
=
∞∑

n=0

L(α)
n (x)tn

of the Laguerre polynomials, we have the relation
G(α, t) = (1− t)α−βG(β, t). This is equivalent to

∞∑
n=0

L(α)
n (x)tn =

( ∞∑
n=0

(α− β)n

n!
tn

)( ∞∑
k=0

L(β)
k (x)tk

)

=
∞∑

n=0

(
n∑

m=0

(α− β)n−m

(n −m)!
L(β)

m (x)

)
tn.

Equating the coefficients of tn, we deduce the connection formula

L(α)
n (x) =

n∑
m=0

(α− β)n−m

(n −m)!
L(β)

m (x),

of the Laguerre polynomials.
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An application of the connection formula

One application of the latter formula is the so-called parameter derivative of
L(α)

n (x) given by

∂

∂α
L(α)

n (x) =
n−1∑
m=0

1
n −m

L(α)
m (x).

To get this result knowing the connection relation

L(α)
n (x) =

n∑
m=0

Cm(n;α, β)L(β)
m (x),

we build the difference quotient

L(α)
n (x)− L(β)

n (x)

α− β
=

n∑
m=0

Cm(n;α, β)

α− β
L(β)

m (x)− L(β)
n (x)

α− β

=
Cn(n;α, β)− 1

α− β
L(β)

n (x) +
n−1∑
m=0

Cm(n;α, β)

α− β
L(β)

m (x),
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An application of the connection formula

so that with β → α

∂

∂α
L(α)

n (x) = lim
β→α

Cn(n;α, β)− 1
α− β

L(β)
n (x) +

n−1∑
m=0

lim
β→α

Cm(n;α, β)

α− β
L(β)

m (x)

since the systems L(α)
n (x) are continuous with respect to α.

lim
β→α

Cm(n;α, β)

α− β
= lim
β→α

(α− β)n−m

(α− β)(n −m)!

= lim
β→α

(α− β)(α− β + 1) · · · (α− β + n −m − 1)

(α− β)(n −m)!

=
1

n −m
,

and the result follows.
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The data corresponding to each family

Every orthogonal polynomial sequence {pn(x) = knxn + . . .}n≥0 is
solution of a second-order differential equation of type

σ(x)y ′′(x) + τ(x)y ′(x) + λny(x) = 0,

where σ(x) = ax2 + bx + c, τ(x) = dx + e, d 6= 0,
λn = −n((n − 1)a + d). The data corresponding to each classical
continuous family are given in the following table:

Jacobi Laguerre Hermite Bessel
system P(α,β)

n (x) L(α)
n (x) Hn(x) yn(x ;α)

σ(x) 1− x2 x 1 x2

τ(x) β − α− (α + β + 2)x α + 1− x −2x 2 + (α + 2)x
kn

(α+β+n+1)n
2nn!

(−1)n

n! 2n (n+α+1)n
2n
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The three-term recurrence relation

Furthermore, a three-term recurrence relation of type

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x),

is satisfied by pn(x), with

an =
kn

kn+1
,

bn = −2bn(an + d − a)− e(2a− d)

(d + 2an)(d − 2a + 2an)
,

cn = −
(

n(an + d − 2a)(4ac − b2) + 4a2c − ab2 + ae2 − 4acd + db2

− bed + d2c
)
× (an + d − 2a)n

(d − 2a + 2an)2(2an − 3a + d)(2an − a + d)

kn

kn−1
.

Maple
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Three-term recurrence relation for the derivatives

Since the derivatives {p′n(x)}n≥1 of {pn(x)}n≥0 is also an orthogonal
polynomial sequence, it also satisfies a three-term recurrence relation of type

xp′n(x) = αnp′n+1(x) + βnp′n(x) + γnp′n−1(x),

with

αn =
n

n + 1
kn

kn+1
,

βn =
−2bn(an + d − a) + d(b − e)

(d + 2an)(d − 2a + 2an)
,

γn = −n((n − 1)(an + d − a)(4ac − b2) + ae2 + d2c − bed)(an + d − a)

(d − 2a + 2an)2(2an − 3a + d)(2an − a + d)

kn

kn−1
.

Maple
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The idea

We set xn = vn(x). Therefore, we have

xvn(x) = vn+1(x), xv ′n(x) =
n

n + 1
v ′n+1(x).

We suppose that

xn = vn(x) =
n∑

m=0

Im(n)pm(x),

which means that the coefficients Im(n) = 0 for m 6= 0,1, . . . ,n. The idea
is to find a recurrence equation satisfied by the inversion coefficients Im(n)
and solve the obtained recurrence equation using the Petkovšek-van-Hoeij
algorithm to get its hypergeometric term solutions.
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Step 1

We substitute vn(x) =
∑n

m=0 Im(n)pm(x), in xvn(x) = vn+1(x) to get

n∑
m=0

Im(n)xpm(x) =
n+1∑
m=0

Im(n + 1)pm(x).

Using the three-term recurrence relation

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x),

it follows that
n∑

m=0

Im(n)
(

ampm+1(x) + bmpm(x) + cmpm−1(x)
)

=
n+1∑
m=0

Im(n + 1)pm(x).

After a shift of index we get

n+1∑
m=0

(
am−1Im−1(n)+bmIm(n)+cm+1Im+1(n)

)
pm(x) =

n+1∑
m=0

Im(n+1)pm(x).
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Step 2

Equating the coefficients of pm(x) yields a mixed recurrence relation with
respect to m and n

am−1Im−1(n) + bmIm(n) + cm+1Im+1(n) = Im(n + 1).

Similarly, we substitute

vn(x) =
n∑

m=0

Im(n)pm(x),

in xv ′n(x) = n
n+1 v ′n+1(x) and use

xp′n(x) = αnp′n+1(x) + βnp′n(x) + γnp′n−1(x)

to get, after a shift of index,

n+1∑
m=0

(
αm−1Im−1(n)+βmIm(n)+γm+1Im+1(n)

)
p′m(x) =

n
n + 1

n+1∑
m=0

Im(n+1)p′m(x).
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Recurrence equation satisfied by Im(n)

By equating the coefficients of p′m(x), we get a mixed recurrence relation in
the variables m and n

αm−1Im−1(n) + βmIm(n) + γm+1Im+1(n) =
n

n + 1
Im(n + 1).

Combining the latter recurrence equation and

am−1Im−1(n) + bmIm(n) + cm+1Im+1(n) = Im(n + 1),

we get out with a recurrence equation with respect to m

αm−1Im−1(n)+βmIm(n)+γm+1Im+1(n) =
n

n + 1

(
am−1Im−1(n)+bmIm(n)+cm+1Im+1(n)

)
,

that is(
αm−1−

n
n + 1

am−1

)
Im−1(n)+

(
βm−

n
n + 1

bm

)
Im(n)+

(
γm+1−

n
n + 1

cm+1

)
Im+1(n) = 0.
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Exercise

We consider the Jacobi polynomials bases vn(x) = (x + 1)n.
1 Show that

xvn(x) = vn+1(x)− vn(x), xv ′n(x) =
n

n + 1
v ′n+1(x)− v ′n(x).

2 We suppose that

(x + 1)n = vn(x) =
n∑

m=0

Im(n)pm(x).

Show that Im(n) is solution of the recurrence relation(
αm−1 −

n
n + 1

am−1

)
Im−1(n) +

(
βm −

n
n + 1

(bm + 1) + 1
)

Im(n)

+
(
γm+1 −

n
n + 1

cm+1

)
Im+1(n) = 0.
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Step 3

The next step is to substitute a,b, c,d ,e for each family and solve the
recurrence relation to get the inversion coefficients. To solve the obtained
recurrence equations, we can use the Petkovšek-van-Hoeij algorithm
implemented in Maple by the command
‘LREtools/hypergeomsols‘(rec,R(m),{},output=basis).
The solution is given up to a multiplicative constant. Let us consider the case
of the Bessel polynomials.
The coefficients Im(n) of the inversion formula

xn =
n∑

m=0

Im(n)ym(x ;α)

of the Bessel polynomials are solutions of the recurrence equation

2 (m + α) (2 m + 3 + α) (2 + 2 m + α) (1 + m + α) (m − n − 1) Im−1(n)

− 2 m (2 m + 3 + α) (2 m − 1 + α) (1 + m + α) (α + 2 + 2 n) Im(n)

− 2 m (m + 1) (2 m − 1 + α) (α + 2 m) (α + m + n + 2) Im+1(n) = 0.
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The Bessel polynomials

Using the Petkovšek-van-Hoeij algorithm implemented in Maple, we get (up
to a multiplicative constant)

Im(n) =
Γ (m − n) Γ (1 + m + α) (α/2 + m + 1/2)

Γ (m + 1) Γ (α + m + n + 2)
.

This means that for the Bessel polynomials

xn =
n∑

m=0

Γ (m − n) Γ (1 + m + α) (α/2 + m + 1/2)

Γ (m + 1) Γ (α + m + n + 2)
×constant×ym(x ;α).

To get the constant, we equate the coefficients of xn in both sides of the
latter equation (noting that yn(x ;α) = (n+α+1)n

2n xn + . . . and
Γ(m − n) = (−n)mΓ(−n)) to get

constant =
2(−2)n

Γ(−n)
.

This leads to the inversion formula

xn = (−2)n
n∑

m=0

(2m + α + 1)
(−n)mΓ(α + m + 1)

m!Γ(n + m + α + 2)
ym(x ;α).
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The Connection formula

In general, to find the coefficients Cm(n) in the connection formula

pn(x) =
n∑

m=0

Cm(n)qm(x),

we combine

pn(x) =
n∑

j=0

Aj (n)x j and x j =

j∑
m=0

Im(j)qm(x),

which yields the representation

pn(x) =
n∑

j=0

j∑
m=0

Aj (n)Im(j)qm(x),

and then, interchanging the order of summation gives

Cm(n) =
n−m∑
j=0

Aj+m(n)Im(j + m),
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The Connection formula

or

pn(x) =
n∑

m=0

Cn−m(n)qn−m(x).

For orthogonal polynomials with even weight such as the Hermite and
Gegenbauer polynomials, we have the relations

pn(x) =

b n
2 c∑

j=0

Aj (n)xn−2j and x j =

b j
2 c∑

m=0

Im(j)qj−2m(x),

from which we deduce

xn−2j =

b n
2 c−j∑

m=0

Im(n − 2j)qn−2j−2m(x).

Finally, we combine the above two expressions and substitute m by m − j to
get

Cm(n) =
m∑

j=0

Aj (n)Im−j (n − 2j),

with

pn(x) =
n∑

m=0

Cm(n)qn−2m(x).
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The Zeilberger algorithm

Since the summand F (j ,m,n) := Aj (n)Im(j) of Cm(n) turns out to be a
hypergeometric term with respect to (j ,m,n), i.e., the term ratios
F (j + 1,m,n)/F (j ,m,n), F (j ,m + 1,n)/F (j ,m,n), and
F (j ,m,n + 1)/F (j ,m,n) are rational functions, Zeilberger’s (combined
with the Petkovšek-van-Hoeij) algorithm applies. If a hypergeometric term
solution exists, the representation of Cm(n) follows then from the initial
values Cn(n) = kn/k̄n, Cn+s(n) = 0, s = 1, 2, . . ., where kn, k̄n are,
respectively, the leading coefficients of pn(x) and qn(x).
For the Bessel polynomials for example,

Aj (n) =
(−n)j (α + n + 1)j

j!

(
−x

2

)j
,

and

Im(j) = (−2)j (2m + β + 1)
(−j)mΓ(β + m + 1)

m!Γ(j + m + β + 2)
.

D.D. TCHEUTIA Inversion, multiplication and connection formulae for classical continuous orthogonal polynomials October 5-12, 2018 Slide 24/26



Inversion problem Multiplication formula Connection formula Some structure relations of COP The inversion formula The connection and multiplication formulae knowing the inversion formula

Connection formula of the Bessel polynomials

It follows from Zeilberger’s algorithm that the coefficients Cm(n) of the
connection formula

yn(x ;α) =
n−m∑
m=0

Cm(n)ym(x ;β),

are solutions of the first-order recurrence equation

− (2 m + β + 1) (m + 1) (m + β + 2 + n) (α + n − 1−m − β) Cm+1(n)

+ (2 m + 3 + β) (β + m + 1) (m − n) (1 + m + α + n) Cm(n) = 0,

which yields the connection formula

yn(x ;α) =
n∑

m=0

(−1)m(2m + β + 1)

× (−n)m(n + α + 1)mΓ(m + β + 1)Γ(β − α + 1)

m!Γ(n + m + β + 2)Γ(m − n + β − α + 1)
ym(x ;β).

Maple
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Thank for your attention
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