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Preliminaries

(i). Normal operator

(ii). Numerical range

(iii). Spectrum

(iv). Self-adjoint operator

(v). Norm

(v). ζ is a cyclic vector if

span{T iζ : i = 0,1,2, ...} = H
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Functional calculus approach

Consider f(T ), where f : σ(T ) → C is a contin-

uous function defined on the spectrum of T .

First, let

p(z) = Σn
l,k=0clkz

lzk

Define p(T ) by

p(T ) = Σn
l,k=0clkT

lT ∗k
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Remark 1 Note that TT ∗ = T ∗T is a necessity,

since p(T ) is not well-defined otherwise. Using

the Stone- Weierstrass theorem, one can de-

fine f(T ) for arbitrary f ∈ C(σ(T )) as a limit of

operators of the form p(T ) in the norm topol-

ogy.
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Proposition 2 If T ∈ B(H) is a normal opera-

tor, then the previously defined map C(σ(T )) ∋
f 7→ f(T ) ∈ B(H) is a well-defined isometric

C*-algebra homeomorphism of C(X) onto the

C*-algebra generated by T and I.
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Examples of Normal operators

(i). Multiplication operators

Let H = L2(X,µ) be a given Hilbert space
and let f ∈ L∞(X,µ).
Then Mf : L2(X,µ) → L2(X,µ) defined by
(Mfg)(x) := f(x)g(x) is called a multipli-
cation operator.
Known facts on multiplication opera-

tors:

1. ∥f∥∞ = ∥Mf∥
2. σ(Mf) = {x ∈ X : µ(|f − x| < ε) >

0, for all ε > 0}

(ii). Diffusion operators

(iii). Self-adjoint differential operators

(iv). Self-adjoint integral operators
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Characterization of normal operators

An operator T is said to be:

(i). Quasinormal if TT ∗T = T ∗TT

(ii). Subnormal if for a Hilbert space H there is
a subspace X of H, and a normal operator
S ∈ B(H) such that S(X) = X and T = S|X

(iii). Hyponormal if ∥T ∗x∥ ≤ ∥Tx∥, for all x ∈ H

(iv). Paranormal if ∥Tx∥2 = ∥T2x∥, for all x ∈ H

(v). Normaloid if ∥T∥ = sup{|λ| : λ ∈ σ(T )}
The following implications hold:
Normal ⇒ Quasinormal ⇒ Subnormal ⇒
⇒ Hyponormal ⇒ Paranormal ⇒ Normaloid
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Spectral theorem for normal

operators

Theorem 3 For every normal T ∈ B(H), there

exists a finite measure space (X,Ω, µ) and a

function f ∈ L∞(X,µ) such that T is unitarily

equivalent to Mf , that is, there is a unitary

transformation U : H → L2(X,µ) such that

T = U−1MfU.

Remark 4 If T does not have a cyclic vector,

then we can decompose H into an orthogonal

sum of subspaces of H in which there is a cyclic

vector for T as per the next lemma
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Lemma 5 Let T ∈ B(H) be a bounded nor-

mal operator. Then there exists a sequence

of subspaces {Hi}i∈I such that for each i, H

is invariant for T , it has a cyclic vector and

H = Σi∈IHi.

9



Finite dimensional case for spectral

theorem

Consider T : Rn → Rn be a self-adjoint opera-
tor.

Suppose that its eigenvalues λ1, ..., λn are dis-
tinct

and the corresponding normalized eigenvectors
are denoted with v1, ..., vn,

and they form an orthonormal basis.

Then the spectral measure at the vector v is
defined by

µv = Σn
k=1|⟨vk, v⟩|

2δλk.
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Proposition 6 Let T ∈ B(H) be normal then

for every polynomial p, we have

⟨p(T )v, v⟩ =
∫

p(x)dµv(x).

Proof. We have that v1, ..., vn form an orthonor-

mal basis, so v = Σn
i=1⟨vi, v⟩vi. Therefore,

⟨T kv, v⟩ = Σn
i,j=1λ

k
i |⟨vi, v⟩|

2|⟨vj, v⟩|2⟨vi, vj⟩
= Σn

i=1λ
k
i |⟨vi, v⟩|

2

=
∫

xkdµv(x),

for all k = 1,2, ...

Q.E.D

Remark 7 If v is cyclic then µv is a spectral

measure.
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Orthogonal Polynomials

Classical orthogonal polynomials:

The well known families of orthogonal polyno-

mials are the:

• Jacobi

• Laguerre

• Hermite

• Bessel.

Consider µ to be a finite Borel measure on the

real line with compact support K.

We assume that K contains infinitely many

points in its support and
∫
xkdµv(x) is finite.

Proposition 8 For every polynomial Φ(x) for

which Φ(x) > 0, x ∈ K, we have
∫
Φ(x)dµv(x).
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Theorem 9 There is a unique sequence of or-
thonormal polynomials with respect to µ,
{pn(x)}∞n=0, with deg(pn) ≤ n such that:

(i). pn(x) = λnxn + ..., λn > 0,

(ii).
∫
pn(x)pm(x)dµ(x) = δm,n.

Proof. Outline of proof

(i). Consider Gram-Schimdt process.

(ii). Put in the process in (i) {1, x, x2, ...}.

(iii). The output will have the required proper-
ties.

(iv). Writing every polynomial as a finite linear
combination of pn − S give uniticity.

Q.E.D
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Remark 10 The zeroes of pn(x) are simple

and real.

Remark 11 Orthogonal polynomials on the real

line are special in some sense. It is possi-

ble to obtain a three-term recurrence formula

for them, which plays an essential role in their

study.
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Proposition 12 [2] The polynomials pn(x) sat-

isfy the recurrence formula

xpn(x) = bnpn+1(x) + anpn(x) + bn−1pn−1(x),

where p− 1(x) ≡ 0, bn > 0.
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Proposition 13 [5] Let T : Rn → Rn be an in-

vertible self-adjoint linear operator with simple

spectrum. Then there is a unique orthonormal

basis {v1, ..., vn} of Rn such that the matrix of

T in this basis is a Jacobi matrix.
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Theorem 14 (Infinite dimensional form) If

T : H → H is a positive normal operator which

has a cyclic vector, then there is a basis in

which its matrix is a Jacobi matrix.

Proof: Analogous to proof of [5], Theorem

7.13.
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More work on Convolution operators and
ρ−system

This study continues....
We study the connections between the three
systems studied by Musonda [4]

We consider two convolution operators

Bf(z) =
∫ ∞

−∞

f(t)dt

2coshπ
2(z − t)

and

Sf(x) = lim
G→0+

∫ ∞

|x−t|>G

f(t)dt

2sinhπ
2(x− t)

found in [4].

We need to extend the work of [4] to show
that orthogonal polynomials can be used to:
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1. Determine L2−boundedness of operator B

and S when they are expressed as eigenvectors

2. Estimate their upper and lower norm bounds

when restriction is put to normal operators.



Conclusion

Question: How can we describe eigenvectors

and eigenvalues of a NORMAL operator?

Hint: When eigenvectors are orthogonal poly-

nomials

19



References

[1] T. K. Araaya, The Symmetric Meixner-

Pollaczek polynomials with real parameter, J.

Math. Anal. Appl. 305(2005), 411423.

[2] W. Arveson, A short course on spectral the-

ory.

[3] G. Freud, Orthogonal polynomials, Lecture

Notes, 2002.

[4] J. Musonda, Orthogonal polynomials, op-

erators and commutation relations, Mlardalen

University Press Licentiate Thesis No. 260,

2017.

20



[5] M. H. Stone, Linear transformations in Hilbert

space.

[6] B. Simon, Orthogonal polynomials on the

unit circle, Part 1



THE END

THANK YOU!!!
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