ON ORTHOGONAL POLYNOMIALS WITH RESPECT TO NORMAL OPERATORS

BENARD OKELO

Department of Mathematics, University of Muenster, Germany

School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, Kenya

AIMS-VOLKSWAGEN STIFTUNG WORKSHOP ON ORTHOGONAL POLYNOMIALS AND APPLICATIONS, DOUALA-CAMEROON, OCTOBER 5-12, 2018

1

Preliminaries

- (i). Normal operator
- (ii). Numerical range
- (iii). Spectrum
- (iv). Self-adjoint operator
- (v). Norm

(v). ζ is a cyclic vector if

 $\overline{span\{T^{i}\zeta: i = 0, 1, 2, ...\}} = H$

2

Functional calculus approach

Consider f(T), where $f : \sigma(T) \to \mathbb{C}$ is a continuous function defined on the spectrum of T. First, let

$$p(z) = \sum_{l,k=0}^{n} c_{lk} z^{l} \overline{z}^{k}$$

Define p(T) by

$$p(T) = \sum_{l,k=0}^{n} c_{lk} T^{l} T^{*k}$$

Remark 1 Note that $TT^* = T^*T$ is a necessity, since p(T) is not well-defined otherwise. Using the Stone- Weierstrass theorem, one can define f(T) for arbitrary $f \in C(\sigma(T))$ as a limit of operators of the form p(T) in the norm topology. **Proposition 2** If $T \in B(H)$ is a normal operator, then the previously defined map $C(\sigma(T)) \ni f \mapsto f(T) \in B(H)$ is a well-defined isometric C^* -algebra homeomorphism of C(X) onto the C^* -algebra generated by T and I.

Examples of Normal operators

(i). Multiplication operators

Let $H = L^2(X, \mu)$ be a given Hilbert space and let $f \in L^{\infty}(X, \mu)$. Then $M_f : L^2(X, \mu) \to L^2(X, \mu)$ defined by

 $(M_fg)(x) := f(x)g(x)$ is called a multiplication operator.

Known facts on multiplication operators:

1.
$$||f||_{\infty} = ||M_f||$$

2. $\sigma(M_f) = \{x \in X : \mu(|f - x| < \varepsilon) > 0, \text{ for all } \varepsilon > 0\}$

(ii). Diffusion operators

(iii). Self-adjoint differential operators

(iv). Self-adjoint integral operators

Characterization of normal operators

An operator T is said to be:

- (i). Quasinormal if $TT^*T = T^*TT$
- (ii). Subnormal if for a Hilbert space H there is a subspace X of H, and a normal operator $S \in B(H)$ such that S(X) = X and $T = S_{|X|}$
- (iii). Hyponormal if $||T^*x|| \le ||Tx||$, for all $x \in H$
- (iv). Paranormal if $||Tx||^2 = ||T^2x||$, for all $x \in H$
- (v). Normaloid if $||T|| = \sup\{|\lambda| : \lambda \in \sigma(T)\}$ The following implications hold: $Normal \Rightarrow Quasinormal \Rightarrow Subnormal \Rightarrow$ $\Rightarrow Hyponormal \Rightarrow Paranormal \Rightarrow Normaloid$

Spectral theorem for normal operators

Theorem 3 For every normal $T \in B(H)$, there exists a finite measure space (X, Ω, μ) and a function $f \in L^{\infty}(X, \mu)$ such that T is unitarily equivalent to M_f , that is, there is a unitary transformation $U : H \to L^2(X, \mu)$ such that $T = U^{-1}M_fU$.

Remark 4 If T does not have a cyclic vector, then we can decompose H into an orthogonal sum of subspaces of H in which there is a cyclic vector for T as per the next lemma **Lemma 5** Let $T \in B(H)$ be a bounded normal operator. Then there exists a sequence of subspaces $\{H_i\}_{i \in I}$ such that for each i, His invariant for T, it has a cyclic vector and $H = \sum_{i \in I} H_i$.

Finite dimensional case for spectral theorem

Consider $T : \mathbb{R}^n \to \mathbb{R}^n$ be a self-adjoint operator.

Suppose that its eigenvalues $\lambda_1,...,\lambda_n$ are distinct

and the corresponding normalized eigenvectors are denoted with v_1, \ldots, v_n ,

and they form an orthonormal basis.

Then the spectral measure at the vector \boldsymbol{v} is defined by

$$\mu_v = \sum_{k=1}^n |\langle v_k, v \rangle|^2 \delta_{\lambda_k}.$$

10

Proposition 6 Let $T \in B(H)$ be normal then for every polynomial p, we have

$$\langle p(T)v,v\rangle = \int p(x)d\mu_v(x).$$

Proof. We have that $v_1, ..., v_n$ form an orthonormal basis, so $v = \sum_{i=1}^n \langle v_i, v \rangle v_i$. Therefore,

$$\begin{aligned} \langle T^{k}v,v\rangle &= \Sigma_{i,j=1}^{n}\lambda_{i}^{k}|\langle v_{i},v\rangle|^{2}|\langle v_{j},v\rangle|^{2}\langle v_{i},v_{j}\rangle \\ &= \Sigma_{i=1}^{n}\lambda_{i}^{k}|\langle v_{i},v\rangle|^{2} \\ &= \int x^{k}d\mu_{v}(x), \end{aligned}$$

for all k = 1, 2, ...

Q.E.D

Remark 7 If v is cyclic then μ_v is a spectral measure.

Orthogonal Polynomials

Classical orthogonal polynomials:

The well known families of orthogonal polynomials are the:

- Jacobi
- Laguerre
- Hermite
- Bessel.

Consider μ to be a finite Borel measure on the real line with compact support K. We assume that K contains infinitely many points in its support and $\int x^k d\mu_v(x)$ is finite.

Proposition 8 For every polynomial $\Phi(x)$ for which $\Phi(x) > 0$, $x \in K$, we have $\int \Phi(x) d\mu_v(x)$.

Theorem 9 There is a unique sequence of orthonormal polynomials with respect to μ , $\{p_n(x)\}_{n=0}^{\infty}$, with $deg(p_n) \leq n$ such that:

(*i*).
$$p_n(x) = \lambda_n x^n + ..., \ \lambda_n > 0,$$

(ii).
$$\int p_n(x)p_m(x)d\mu(x) = \delta_{m,n}$$
.

Proof. Outline of proof

- (i). Consider Gram-Schimdt process.
- (ii). Put in the process in (i) $\{1, x, x^2, ...\}$.
- (iii). The output will have the required properties.
- (iv). Writing every polynomial as a finite linear combination of $p_n S$ give uniticity.

Q.E.D

Remark 10 The zeroes of $p_n(x)$ are simple and real.

Remark 11 Orthogonal polynomials on the real line are special in some sense. It is possible to obtain a three-term recurrence formula for them, which plays an essential role in their study. **Proposition 12** [2] The polynomials $p_n(x)$ satisfy the recurrence formula

 $xp_n(x) = b_n p_{n+1}(x) + a_n p_n(x) + b_{n-1} p_{n-1}(x),$ where $p - 1(x) \equiv 0, \ b_n > 0.$ **Proposition 13** [5] Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible self-adjoint linear operator with simple spectrum. Then there is a unique orthonormal basis $\{v_1, ..., v_n\}$ of \mathbb{R}^n such that the matrix of T in this basis is a Jacobi matrix.

Theorem 14 (Infinite dimensional form) If $T: H \rightarrow H$ is a positive normal operator which has a cyclic vector, then there is a basis in which its matrix is a Jacobi matrix.

Proof: Analogous to proof of [5], Theorem 7.13.

More work on Convolution operators and $\rho-{\rm system}$

This study continues....

We study the connections between the three systems studied by Musonda [4]

We consider two convolution operators

$$Bf(z) = \int_{-\infty}^{\infty} \frac{f(t)dt}{2\cosh\frac{\pi}{2}(z-t)}$$

and

$$Sf(x) = \lim_{G \to 0^+} \int_{|x-t|>G}^{\infty} \frac{f(t)dt}{2sinh\frac{\pi}{2}(x-t)}$$

found in [4].

We need to extend the work of [4] to show that orthogonal polynomials can be used to:

1. Determine L^2 -boundedness of operator Band S when they are expressed as eigenvectors 2. Estimate their upper and lower norm bounds when restriction is put to normal operators.

Conclusion

Question: How can we describe eigenvectors and eigenvalues of a **NORMAL** operator?

Hint: When eigenvectors are orthogonal polynomials

References

[1] T. K. Araaya, The Symmetric Meixner-Pollaczek polynomials with real parameter, J. Math. Anal. Appl. 305(2005), 411423.

[2] W. Arveson, A short course on spectral theory.

[3] G. Freud, Orthogonal polynomials, Lecture Notes, 2002.

[4] J. Musonda, Orthogonal polynomials, operators and commutation relations, Mlardalen University Press Licentiate Thesis No. 260, 2017.

20

[5] M. H. Stone, Linear transformations in Hilbert space.

[6] B. Simon, Orthogonal polynomials on the unit circle, Part 1

THE END

THANK YOU!!!